

Highly Tunable Molecular Rectifier Realized by Interfacial Design in Molecular Heterojunction with Two-Dimensional Materials

Jaeho Shin^{1,†}, Seunghoon Yang^{1,†}, Yeonsik Jang², Jung Sun Eo¹, Tae-Wook Kim³, Takhee Lee², Chul-Ho Lee^{1,*}, and Gunuk Wang^{1,*}

¹KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea

²Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea ³Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, Jeollabuk-do 55324, Korea

2020 KPS Spring Meeting

2020.07.13-15

Korea Univ.

Jaeho Shin

Colloborators

Korea Univ.: Prof. C.-H. Lee (2D materials)

SNU: Prof. T. Lee (Transport Mechanism)

KIST: Dr. T-.W. Kim (Transport Mechanism)

Brief Introduction : Molecular Electronics (ME)

Beginning of Molecular Electronics

"Donor-Acceptor" molecule acts as P-N junction diode

Aviram and M. Ratner, Chem. Phys. Lett. 29, 277 (1974)

Molecular Junction

Development of ME

Advantages

- Low cost & Low Temp.
- Low energy & High Density
- Molecular Functionalities
- Self-Assembled Monolayer

Challenges

- Synthesis of Functional Molecules
- Stability & Yield
- Device Platform
- Integration/Addressability

Previous Research: Molecular Rectifier

Type 1.

- Molecular-scale diode by using asymmetric molecule-metal coupling in the molecular junctions.
- Owing to the asymmetric molecule-metal coupling, the MO mainly follows the Fermi level of the one electrode.
- The average rectification ratio at a 1.5 V bias is about one.

ACS Nano, 2, 827-832 (2008) Sensors, 17, 956 (2017)

- STM-BJ based molecular-scale diode, where an acceptor moiety covalently connected to a donor moiety.
- This molecular junctions resemble the Aviram-Ratner model molecule.
- The average rectification ratio at a 1.5 V bias is about five.

Nat. Chem. 1, 635-641 (2009)

ACS Nano, 5, 9256-9263 (2011)

Previous Research: Molecular Rectifier

- Two-level diode derived from EGaIn/SC₁₅Fc-C≡C-Fc/Pt molecular junction.
- Rectification ratio of 6.3 x 10⁵ which is the results of a mechanism of rectification based on an increase in the number of conducting molecules in only one direction of bias driven by electrostatic interactions.

 Nat. Nanotech. 12, 797-803 (2017)

Molecular Heterojunction System

- Tip-loading force is set as 1 nN \rightarrow To fix the interfacial coupling
- *n*-type MoS₂ / *p*-type WSe₂
- Different HOMO-LUMO gap (alkyl- or conjugated-based)

- I. Type of 2D semiconductor-dependence (MoS₂ or WSe₂)
- II. Number of MoS_2 layers-dependence $(1_L-/2_L-/3_L-MoS_2)$
- III. Molecular length-dependence

Electrical Characteristics for Molecular Heterojunction

Shin | 2020 KPS Spring Meeting | 13-15 July 2020

Tunable Rectification of Molecular Heterojunction System

Charge Transport Model

Exp. values

- OPT(n) or C(n)/1_L-MoS₂
- OPT(n) or C(n)/2, -MoS,
- OPT(n) or C(n)/3, -MoS,

Theor, values

- OPT(n) or C(n)/1, -MoS,
- OPT(n) or C(n)/2_L-MoS₂
- OPT(n) or C(n)/3, -MoS,
- Other reported molecular junction w/o N₁-MoS₂

Summary

Conclusion

- We simply introduce a two-dimensional (2D) semiconductor (MoS₂ and WSe₂) as a rectifying designer at the alkyl or conjugated molecules/Au interface under 2 nm scale.
- These rectifying characteristics can be understood by the activation of different transport pathways depending on the voltage polarities through the different energy band alignments at junction interfaces.
- Notably, the rectifying characteristics can be largely tuned from 2.46 \pm 1.42 to (1.38 \pm 0.73) \times 10³ by changing the junction constituents such as molecular species, the type and number of 2D semiconductor layers.

J. Shin et al. Nature Communications 11, 1412 (2020)